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Axisymmetric shapes and stability of nonlinearly polarizable dielectric (ferrofluid) 
drops of fixed volume which are pendant/sessile on one plate of a parallel-plate 
capacitor and are subjected to an applied electric (magnetic) field are determined by 
solving simultaneously the free boundary problem comprised of the Young-Laplace 
equation for drop shape and the Maxwell equations for electric (magnetic) field 
distribution. Motivated by the desire to explain certain experiments with ferrofluids, 
a constitutive relation often used to describe the variation of polarization with 
applied field strength is adopted here to close the set of equations that govern the 
distribution of electric field. Specifically, the nonlinear polarization, P ,  is described 
by a Langevin equation of the form P = a[coth (7E) - 1/(7E)], where E is the electric 
field strength. As expected, the results show that nonlinearly polarizable drops 
behave similarly to linearly polarizable drdps at low field strengths when drop 
deformations are small. However, it is demonstrated that a t  higher values of the field 
strength when drop deformations are substantial, nonlinearly polarizable supported 
drops whose contact lines are fixed, as well as ones whose contact angles are 
prescribed, display hysteresis in drop deformation over a wide range of values of the 
Langevin parameters a and 7. Indeed, properly accounting for the nonlinearity of the 
polarization improves the quantitative agreement between theory and the 
experiments of Bacri et al. (1982) and Bacri & Salin (1982, 1983). Detailed 
examination of the electric fields inside nonlinearly polarizable supported drops 
reveals that they are very non-uniform, in contrast to the nearly uniform fields 
usually found inside linearly polarizable drops. 

1. Introduction 
In  the presence of an applied electric (magnetic) field, a supported - pendant or 

sessile - or a free drop of a dielectric (magnetic) liquid elongates in the direction of 
the applied field. The form of the equations that govern the response of a drop of 
dielectric liquid in an applied electric field is the same as those that govern the 
response of a drop of magnetic liquid, or ferrofluid, in an applied magnetic field (cf. 
Rosensweig 1979, 1985; Melcher & Taylor 1969; Melcher 1981). Therefore, 
conclusions made in the context of the problem of a drop in an electric field, as in this 
paper, apply equally well to the magnetic problem. 

Theoretical analyses, such as that due to Rosenkilde (1969) and Berkovsky & 
Kalikmanov (1985), approximated drop shapes in externally applied fields as 
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FIQURE 1. Three possible ways that the equilibrium aspect ratio a / b  of a free or supported drop can 
vary as a function of the dimensionless field strength. In the case of a free drop, E ,  is the uniform 
field strength infinitely far away from the drop. In the case of a supported drop, one electrode is 
at potential uo and the other electrode, a distance h from it, is grounded. -, Stable; ---, 
unstable; *, turning point. 

spheroids. Through such approximations, these authors surmized that liquid drops 
can respond in one of three qualitative ways that depend on the ratio of the 
permeability of the drop to that of the surrounding fluid, K :  see figure 1. Most 
remarkably, as shown in figure 1, these analyses predicted that for certain values of 
K ,  drop deformation can exhibit hysteresis. The possibility of hysteresis has been 
confirmed in laboratory experiments by Bacri, Salin & Massart (1982) and Bacri & 
Salin (1982, 1983). Unfortunately, rigorous numerical calculations by Miksis (1981), 
Sherwood (1988), and Cheng & Miksis (1989) have been unable to demonstrate the 
occurrence of hysteresis. Theoretical prediction of if and when supported drops can 
exhibit hysteresis in deformation under the influence of an applied electric (magnetic) 
field is a major goal of this paper. 

Recently, Wohlhuter . & Basaran (1992, hereinafter referred to as W & B), (i) 
provided a thorough and critical analysis of previous work in this area and (ii) 
analysed the axisymmetric shapes and stability of linearly polarizable dielectric 
drops that are surrounded by another linearly polarizable dielectric and are pendant 
or sessile on a face of a parallel-plate capacitor. W & B  showed that hysteresis can 
occur, but the range of values of K over which it occurs is quite narrow and is strongly 
dependent on the boundary condition a t  the three-phase contact line where the drop, 
the surrounding fluid, and the solid plate meet. However, the theoretical prediction 
of W & B  of the case corresponding to the experiments of Bacri and coworkers 
differed from the experimental measurements by a factor of two. W & B showed that 
some, but not all, of the differences between the theory and the experiments could 
be attributed to the method of estimating K in the experiments and also to the use 
of suspensions of drops instead of single drops of ferrofluid in the experiments. 
Another major goal of this paper is to resolve completely this long-standing 
discrepancy between theory and experiment. 

The pioneering approximations of Rosenkilde (1969) and others and the more 
recent, rigorous calculations of Miksis (1981), Sherwood (1988), Cheng & Miksis 
(1989), and W & B have all assumed the drops to be linearly polarizable materials. 
For such materials, the relationship between the induced polarization (or 
magnetization) and the applied field is independent of field strength. However, 
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magnetic liquids in particular (e.g. Riosengweig 1979, 1985) and dielectric liquids at  
large field strengths are nonlinearly pslarizable, i.e. the constant of proportionality 
between the polarization and the applie’d field is field dependent. To date, only 
Boudouvis, Puchalla & Scriven (1988) have made calculations that account for the 
nonlinear polarization of the drop material. They presented results for only one case 
which modelled and agreed with their experimental measurements, and the 
parameters they used to describe the nonlinear magnetization of their drop fluid were 
such that only a monotonically increasing deformation curve resulted. 

Section 2 of this paper presents the equations and boundary conditions that 
govern the equilibrium shapes and stability of a nonlinearly polarizable dielectric 
drop on a face of a circular parallel-plate, capacitor. Because the electric field in the 
drop is governed by a nonlinear Maxwell equation, boundary-integral techniques 
such as those used by Miksis (1981) cannothe used to determine the field inside the 
drops. Therefore, the computational techqiques developed in W & B for drops that 
are linearly polarizable dielectrics are extended to analyse situations in which the 
drop material is nonlinearly polarizable. Section 3 presents solution families, drop 
shapes, and potential and electric fields computed from the theoretical analysis. 
Finally, in $4  these results are compared to experimental results reported by Bacri 
et al. (1982) and Bacri & Salin (1982, 1983), and theory and experiment are at last 
brought into accord. 

2. Mathematical formulation 
2.1. Fundamental equations for nonlinearly polarizable materials 

An axisymmetric drop of a nonlinearly polarizable dielectric of permittivity f& 

surrounded by a linearly polarizable fluid insulator of permittivity E ,  sits on or hangs 
from, i.e. is sessile on or pendant from, one face of a circular parallel-plate capacitor 
of radius large compared to the distance h between the plates, as shown in figure 2. 
Here, eb = ebb(&!), where is the electric field, and e, is a constant for a given 
material. The surface tension of the drop/ambient fluid interface is cr. One plate of 
the capacitor is at potential uo, relative to the other, which is grounded. The electric 
field inside and outside the drop is governed by Maxwell’s equations: 

G.B = 0, ( 1 )  

i i x x = o .  (2) 

Equations ( 1 )  and (2) are Gauss’s/Coulemb’s and Faraday’s laws respectively, and 
the electric displacement fi is related to the electric field and the fluid polarization 
P by 

where e0 is the permittivity of free space. The Maxwell equations (1) and (2) are not 
closed until a constitutive relation is specified between the polarization and the 
electric field: this point is returned to below. In  the simplest case, the polarization 
can be taken parallel to the electric field, i.e. 

B = €E =. E,E+B, (3) 

P -  P = - E .  
E (4) 

For ferrofluids, the fluid polarization or magnetization i@ is also collinear with the 
magnetic field a: such materials are known as soft materials (e.g. Rosensweig 1985). 

1-2 
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FIQURE 2. Axisymmetric dielectric drop on a face of a circular parallel-plate capacitor. 

The stress tensor for a nonlinearly polarizable, incompressible fluid for which PllE 
and at  constant temperature is (see e.g. Rosensweig 1985; Basaran 1984) 

L J o  

where @- is the sum of ordinary and electrostrictive pressures. For a linearly 
polarizable fluid, (5)  reduces to the familiar form given in standard texts (e.g. Landau 
& Lifshitz 1960) : 

f = - @ +@2) /+ €EE. (6) 

2.2. Governing equations and boundary conditions 
When gravitational and electrical forces are vanishingly small compared to surface 
tension forces, equilibrium drop shapes are segments of spheres and are conveniently 
parametrized in terms of the single parameter d,  the signed distance from the centre 
of the sphere to the plate, or its ratio to the radius of the sphere, i.e. D = d/R. When 
D = 0 the drop is a hemisphere ; when D > 0 the drop is larger than a hemisphere ; 
when D < 0 the drop is smaller than a hemisphere. Equations that follow are made 
dimensionless by measuring length in units of R, potential U in units of uo. Hence 

A variable appearing with a tilde above it is dimensional; without a tilde it is 
dimensionless. 

From (2), the electric field E= - V U  both outside and inside the drop. Then from 
(1)  and (3) it follows that the potential is governed by the linear Laplace equation 
outside the drop 

and by a nonlinear partial differential equation inside it 

V2Ua)  = 0 in V, (8) 
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Subscripts and superscripts a and b denote the exterior and interior of the drop, 
respectively. 

The drop shape is unknown a priori and is governed by the augmented 
Y oung-Laplace equation, the requisite balance between surface tension, gravi- 
tational, and electrical forces : 

L 

+ 2 P dE - 2ELb)Dkb)] on Ss, (10) 

where Ss is the drop surface. Equation (10) results when (5) for the stress tensor of 
the fluid in the drop and (6) for that outside are substituted into the normal stress 
boundary condition. 2X is twice the local mean curvature of the interface and is the 
negative of the surface divergence of the field of unit normals to the drop surface, i.e. 
2 X =  -Vs.n,. The distance z is measured from the origin in the direction opposite 
to gravity ; reference pressure K = RAp, /a  is simply the pressure excess at the level 
of the plane called z = 0 in the drop, measured in units of half the capillary pressure 
within an uncharged spherical drop of radius R .  En and Et are the normal and 
tangential components, respectively, of the electric field at the drop surface, where 
E6&) + ELb) but Eta) = Elb) = E,, as shown below. D, is the normal component of the 
electric displacement at  the drop surface. K, = is the ratio of the permittivity of 
the material surrounding the drop to the permittivity of free space, otherwise known 
as the dielectric constant of the ambient fluid. N,  = s ,Ru3(2ah2) is the electric bond 
number; H = h/r  is the dimensionless plate separation. The quantity 

(N, Ka)f = (u,/h) (€a,R/2a)t 

is the dimensionless parallel-plate electric field strength. In most situations 
of practical interest, the ambient fluid is virtually non-polarizable (or non- 
magnetizable), e.g. air. Therefore, it is supposed in $ 3  that E, = e, or K~ = 1. It is also 
supposed in $3  that the effect of gravity is far less than that of surface tension, i.e. 
the gravitational bond number G = gR2Ap/a is vanishingly small, where g is the 
acceleration due to gravity and Ap the density difference between the drop and 
surrounding fluid. When G + 0, K is simply the dimensionless excess pressure in the 
drop over ambient pressure. The reference pressure K is set by constraining the drop 
volume to be a fixed amount 6: 

v =  v,. (11) 

n, x e, = 0 at z = a along Ssym, (12)  
SO, = S[cos-'(n,-n,)] = 0 or Sx, = 0 at z = 0, (13a, b)  

u= On Sbottom, (14) 

U = 0 on Stop, (15) 

n-VU = 0 on S,,, and Sasym, (16) 

or U(") = Vb) on Ss, (17) 

The governing equations (8), (9), and (10) are solved subject to the boundary 
conditions 

Eta) = E(b) E 
t 
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where e, is a unit vector and a is the length of the drop in the z-direction. Equation 
(12) ensures that the drop profile remains axially symmetric as it deforms. Equation 
(13) is the boundary condition at  the contact line (circle), where x S ~ S S ,  8, is the 
contact angle and nB is the unit normal to the bottom plate. Equation (13a) is the 
fixed-contact-angle condition and ( 13 b )  is the fixed-contact-line condition. Equations 
(14) and (15) ensure that the potentials of the two solid plates are uniform because 
they are conducting surfaces. Equation (16) is the condition that the electrostatic 
field and potential be axially symmetric and that far from the drop the field 
asymptotically approach a vertically directed uniform field which has strength 1 / H .  
Equations (17) and (18) are the conditions that the tangential component of the 
electric field and the normal component of the electric displacement be continuous 
across the interface (see e.g. Landau & Lifshitz 1960). 

2.3. Constitutive equation for polarization 

The equation set is closed by means of a constitutive equation for polarization : 

The Langevin equation (19) is the simplest form of a constitutive equation frequently 
used to describe the polarizability of magnetically susceptible fluids (Rosensweig 
1985). The physical meanings of the parameters a and 7 can be understood by 
examining the asymptotic behaviour of P for small and large values of E while 
holding a and 7 fixed: 

lim P = +mE, 
E+O 

lim P = a. 
E*m 

The product fa7 is the initial slope of the curve relating polarization to field strength ; 
a is the saturation polarization and 7 is a growth constant. Figure 3 shows how the 
polarization P varies with field strength E as a function of a and 7 ,  when the product 
a7 is held fixed at  120. In $ 3 ,  theoretical predictions are reported for nonlinearly 
polarizable drops for which 017 = 120. The dimensionless form of (3) is 

D = KE = E+ P, (22)  

where K = K(P) = €/.so. Therefore, when E+O, a nonlinearly polarizable material 
behaves like a linear material with K = 1 +&aT. 

Using expression (19) for the polarization, the Young-Laplace equation (10) can 
be rewritten as 

-2% = K-Gz+NeH2 K ~ E ~ ) ~ - ( ( K ~ - ~ ) E ~  { 
a 

+2-log[sinh 7 ( T E ( ~ ) ) / ( T E ( ~ ) ) ] - ~  

Were the drop a linear material, (23) would then reduce to (cf. W & B) 
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FIQIJRE 3. Variation of polarization, P ,  with electric field strength, E ,  when ar = 120. 

where the dielectric constant Kb = q,/q, is a constant. W & B analysed the response 
of supported drops its a function of N,,,, = N, K, for various values of 
KWB = K ~ / K ,  = Eb/6,. Because K, = 1 in this paper, the results of W & €3 are readily 
recovered here by identifying Kb in this paper with their K~~ and N, in this paper with 
their N,, WB. 

3. Results 
Figure 4 shows how the aspect ratio of drops making a fixed contact an le of 90' 

(D = 0) with the supporting plate varies with parallel-plate field strength 3. One of 
the curves shown is for a linearly polarizable drop with K = 41 ; all others are for 
nonlinearly polarizable drops for which the product a7 = 120. The response of the 
nonlinearly polarizable drop with a = 12, 7 = 10 is identical to that of the linearly 
polarizable drop : the two curves lie on top of one another. These two shape families 
are stable up to the turning point and unstable beyond it (cf. W & B). The end points 
of these two curves represent termination of these two shape families, where the 
mean curvature a t  the drop tip tends to infinity (Miksis 1981, cf. W&B).  The 
response of nonlinearly polarizable drops for which 7 < 10 is also identical to that of 
the linearly polarizable drop; these curves are not shown in figure 4. When 7 is 
increased to 50, the response of the nonlinearly polarizable drop differs only slightly 
from that of the linearly polarizable drop. Nevertheless, the response is qualitatively 
unchanged, i.e. there is loss of stability at the turning point with respect to field 
strength and this shape family with 7 = 50 also terminates at the largest aspect ratio 
shown. When 7 is increased to 100, there is little quantitative difference in the 
response of the nonlinearly polarizable drop from that of the linearly polarizable 
drop for drop aspect ratios as high as 3.5. Indeed, the value of the field strength at 
the first turning point along the curve corresponding to 7 = 100 differs by less than 
0.4% from that a t  the turning point along the curve corresponding to the linearly 
polarizable drop. However, the qualitative response of these two drops is radically 
different : the shape family of nonlinearly polarizable drops with 7 = 100 has a second 
turning point with respect to field strength at which it regains stability with respect 
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FIQURE 4. Variation of aspect ratio alb with field strength for initially hemispherical drops (D = 0) 
whose contact angles are prescribed. For nonlinearly polarizable drops, the product a7 = 120. The 
drop deformation curve for a linearly polarizable drop with K = 41 is also shown for comparison. 
Here the plate spacing H = 20. 

to perturbations having an infinitesimal amplitude. Thus, this shape family exhibits 
hysteresis in drop deformation, similar to that reported earlier by W & B for linearly 
polarizable drops when the value of K falls within some range. Moreover, that this 
hysteresis behaviour exists over a wide range of values of a and 7 can also be seen 
from figure 4, cf. the shape family for which a = 0.6 and 7 = 200. Finally, as the value 
of 7 is further increased, or the value of a is further decreased, the response becomes 
one in which drop deformation, or aspect ratio, increases monotonically with field 
strength, cf. the shape families for which a = 0.55 and 7 = 120/0.55 = 218.2 and 
a = 0.3 and T = 400. 

Figure 5 shows the evolution of shapes of drops that are members of the families 
depicted in figure 4, which are constrained to meet the supporting plate at a fixed 
contact angle of 90°, with increasing drop deformation. Plainly, up to an aspect ratio 
of about 3, the drop shapes in figures 5 ( a ) b ( c )  are remarkably similar. When the 
aspect ratio exceeds the value it has at the turning point, the contact line of the 
linearly polarizable drop moves only slightly: see figure 5(a) .  Indeed, for 
3 < a/b < 3.4, the contact line almost behaves as though it were pinned on the solid 
support. This fact may explain why the mean curvature at  the drop tip rapidly grows 
without bound for a/b x 3.4 and the family of linearly polarizable drops of K = 41 
ends shortly thereafter. By contrast, the contact line of the nonlinearly polarizable 
drop shown in figure 5 ( b )  continuously recedes as the drop deforms : this permits the 
formation of highly elongated shapes and of virtually conical drop tips of increasing 
local mean curvature. The last drop shape shown in figure 5(b),  with an aspect ratio 
of 5, lies along the upper stable branch of the shape family with a = 1.2, T = 100 that 
is shown in figure 4. The nonlinearly polarizable drop whose shapes are shown in 
figure 5 ( c )  behaves similarly to that shown in figure 5(b).  However, there are some 
important differences in the response of these two nonlinearly polarizable drops as 
well. Figure 3 makes plain that the drop of figure 5 (c) saturates more readily with the 
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FIQURE 5. Shapes of axisymmetric supported drops when D = 0, G = 0 and H = 20; fixed-contact- 
angle case. (a) Linearly polarizable drop with K = 41. Values of the parallel-plate electric field 
strength@ corresponding to the aspect ratios shown are 0 for a/b = 1,0.3643 for alb = 1.99,0.3509 
for a/b = 3.01, and 0.3423 for a/b = 3.41. (b) Nonlinearly polarizable drop with a = 1.2 and 
7 = 100. Values of the parallel-plate electric field strength @ corresponding to the aspect ratios 
shown are 0 for a/b = 1,0.3656 for a/b = 2,0.3548 for a/b = 3.03,0.3426 for a/b = 3.99, and 0.3418 
for a/b = 5. (c) Nonlinearly polarizable drop with a = 0.3 and 7 = 400. Values of the parallel-plate 
electricfieldstrengthh$corresponding totheaspectratiosshownareOforajb = 1,0.4021 foralb = 2, 
0.4978 for a/b = 3, and 0.6078 for a/b = 4. 

applied field than the drop of figure 5 ( b ) .  As 7 increases and a decreases, while 
keeping their product constant, as in going from figure 5 (b) to 5 (c), the polarizability 
of a nonlinearly polarizable drop approaches that of the ambient fluid outside it. 
Indeed, for sufficiently large (small) values of 7 (a) a situation is reached in which the 
electric field everywhere between the plates - inside as well as outside the drop - is 
virtually (l/H) e,. Consequently, the tips of drops in figure 5 (c) are more rounded 
than those of drops in figure 5(b)  even at large deformations: compare the tips of 
drops in figures 5 ( b )  and 5 ( c )  a t  an aspect ratio of 4. Moreover, one would expect the 
drop of figure 5 (c) to undergo a smaller deformation than the drop of figure 5 (b) when 
compared at the same value of the applied field strength : this conclusion too accords 
with the deformation response of the shape families depicted in figure 4. 
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FIQURE 6. Drop shapes, equipotentials, and electric field vectors inside nonlinearly polarizable 
drops whose contact angles are fixed when D = 0, G = 0 and H = 20. (a) a = 1.2,7 = 100, a/b = 1.0 
and A$ = 0;  ( b )  a = 1.2, T = 100, a/b = 4.3 and A$ = 0.3412; (c) a = 0.3, T = 400, a/b = 1.0 and 
@ = 0;  (d) a = 0.3, T = 400, a/b = 4.0 and 4 = 0.6088. 

To gain further insight into the underlying physics, it is instructive to examine the 
electric field vectors and equipotential lines inside nonlinearly polarizable drops. 
Figure 6 shows the evolution with increasing drop deformation of the electric field 
and equipotential lines inside initially hemispherical, nonlinearly polarizable drops 
whose contact angles are fixed. In figures 6(a)  and 6 ( b )  a = 1.2 and 7 = 100, and in 
figures 6(c)  and 6 ( d )  a = 0.3 and 7 = 400. Figures 6(a) and 6 ( b )  show that the field 
inside a drop having an 0 ( 1 )  value of a becomes non-uniform as drop deformation 
increases. This stands in contrast to drops that are linearly polarizable (W & B), and, 
not too surprisingly, also to ones which have a large enough value of a or a small 
enough value of the growth constant 7, inside which the field is virtually uniform at 
all aspect ratios (not shown here). As figures 6(a) and 6(c) show, the field inside 
hemispherical drops is uniform regardless of the values of a and 7.  What is unclear 
is how the field behaves as the saturation polarization a is lowered, or the growth 
constant 7 is raised. Figure 6 ( d )  shows the electric field and equipotential lines inside 
a drop which is more readily saturated than the one in figure 6 ( b )  80 that its aspect 
ratio versus field strength curve does not exhibit hysteresis (cf. figdre 4). Clearly, the 
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FIGURE 7. Variation of aspect ratio alb with field strength of initially hemispherical drops (D = 0) 
whose contact angles are prescribed. Here the plate spacing H = 20. For nonlinearly polarizable 
drops, the product a7 = 30. The deformation curve for a linearly polarizable drop with K = 11 is 
also shown for comparison. 

N1 

field inside the drop is virtually uniform at an aspect ratio as high as 4. However, the 
field strength inside does not remain constant as the relative importance of electrical 
forces to surface tension forces increases. The field strength inside the drop increases 
from approximately 0.004 when @ = 0 to 0.028 when A$ = 0.6088. 

Figure 7 shows how the aspect ratio of drops making a fixed contact an le of 90' 
(D = 0) with the supporting plate varies with parallel-plate field strength 4. One of 
the curves shown is for a linearly polarizable drop with K = 11 and the other is for 
a nonlinearly polarizable drop for which the product a7 = 30. W & B have shown that 
the aspect ratio of the linear dielectric drop with K = 11 increases monotonically with 
N,. Figure 7 makes plain that the effect of increasing nonlinearity in polarization, i.e. 
increasing 7 and decreasing a, is to make the aspect ratio versus field strength curves 
flatter while leaving the qualitative response unchanged in comparison to the 
linearly polarizable drop. Figures 4 and 7 both demonstrate the big role that 
nonlinear polarization can play in determining the response of real drops. 

Figure 8 shows how the aspect ratio of drops making a fixed contact angle of 
approximately 37" (D = 0.8) with the supporting plate varies with parallel-plate field 
strength N .  One of the curves shown is for a linearly polarizable drop with K = 41 
and the other is for a nonlinearly polarizable drop for which the product a7 = 120. 
In  the limiting case of the linearly polarizable drop, the drop deformation increases 
with field strength up to the turning point and the shape family terminates shortly 
thereafter, as shown in figure 8. By contrast, for the nonlinearly polarizable drop the 
deformation versus field strength curve is not only flatter than that of the linearly 
polarizable drop, but exhibits hysteresis as well. Thus, proper accounting for the 
nonlinear polarization of the drop material has allowed theoretical prediction of 
hysteresis in drop deformation for drops having a wide variety of wetting properties 
with the solid support (i.e. in situations in which the contact angle is not necessarily 
goo). Moreover, the methodology of this paper and the new predictions can provide 
guidance to future experiments with fluids having arbitrary wetting properties with 
the supporting plate. 

Figure 9 shows the electric field and equipotential lines inside drops that meet the 
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FIGURE 8. Variation of aspect ratio a l b  with field strength for drops having a volume larger than 
a hemisphere and whose contact angles are prescribed. Here the drop size parameter D = 0.8 end 
the plate separation H = 20. For nonlinearly polarizable drops, the product UT = 120. The 
deformation curve for a linearly polarizable drop with K = 41 is also shown for comparison. 
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and H = 20. (a )  a/b = 3.0 and h$ = 0, ( b )  a lb  = 9.0 and h$ = 0.3026. 
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supporting plate at  a fixed contact angle that differs from 90". The drops shown in 
figure 9 have nonlinear polarization parameters a = 1.2 and T = 100. When the 
contact angle is approximately 37" (D = 0.8) the field is highly non-uniform inside 
the 'fat ' drop even when it is undeformed (i$ + 0) and is strongest at the bottom (see 
figure 9a). In contrast to hemispherical drops, the electric field vectors inside such 
large drops are not parallel to the applied field near the bottom of the drop and tend 
to point away from the axis of symmetry. Figure 9(b) shows the evolution with field 
strength of the shape and the electric field inside the nonlinearly polarizable drop 
down in figure 9(a) .  As such a fat drop deforms, the field near its tip increases, as in 
an initially hemispherical drop having the same values of a and T (recall figure 6 b ) .  
However, the field near the bottom plate inside the drop is still larger than the field 
anywhere else inside it. Remarkably, a region of weak field strength develops in the 
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a = 0.6. T = 200 
3 -  a = 1.2, 7 = 100 

a = 0.3, T = 4OC 

a 
- 2 -  
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1. 

0.2 0.3 0.4 0.5 0.6 0.7 

FIQURE 10. Variation of aspect ratio alb with field strength for initially hemispherical drops 
(D = 0) whose contact lines are fixed. For nonlinearly polarizable drops, the product a7 = 120. The 
deformation curve for a linearly polarizable drop with K = 41 is also shown for comparison. Here 
the plate spacing H = 20. 

N! 

centre of the drop, between its tip and the bottom plate. The complexity of the fields 
inside and outside such drops, in contrast to simple spheroids, makes plain the 
dangers of using ad hoc models such as the spheroidal approximation instead of 
rigorous computer-aided means in analysing the response of supported drops. 

Figure 10 shows how the aspect ratio of drops whose contact lines are fixed varies 
with parallel-plate field strength h$. One of the curves shown is for a linearly 
polarizable drop with K = 41 ; all others are for nonlinearly polarizable drops for 
which the product a7 = 120. The response of the nonlinearly polarizable drop with 
a = 12,7  = 10 is identical to that of the linearly polarizable drop : the two curves lie 
on top of one another. These two shape families are stable up to the turning point and 
unstable. beyond it (cf. W&B).  The end points of these two curves represent 
termination of these two shape families, where the mean (radius of) curvature at the 
drop tip tends to infinity (zero). When T < 10, the response of nonlinearly polarizable 
drops whose contact lines are fixed, as well as ones whose contact angles are 
prescribed (cf. figure 4), are identical to those of linearly polarizable drops obeying 
the same contact line boundary condition with the solid support. When 7 is increased 
to 100, there is little quantitative difference in the response of the nonlinearly 
polarizable drop from that of the linearly polarizable drop for small to moderate drop 
aspect ratios. However, the qualitative response of these two drops is radically 
different : the shape family of nonlinearly polarizable drops with 7 = 100 haa a second 
turning point with respect to field strength at  which it regains stability with respect 
to all axisymmetric perturbations having an infinitesimal amplitude. Thus this shape 
family exhibits hysteresis in drop deformation. Moreover, this hysteresis behaviour 
exists over a wide range of values of a and T ,  as shown in figure 10. As the value of 
T is further increased, or the value of a is further decreased, the response becomes one 
in which drop deformation, or aspect ratio, increases monotonically with field 
strength, cf. the shape families for which a = 0.4 and a = 0.3. Figures 10 and 4 make 
plain that fixing the contact line of a drop, instead of prescribing its contact angle, 
widens the range of values of a, or 7 ,  when the product a7 is fixed, over which 
hysteresis can be observed. Whereas a drop having Langevin parameters a = 0.5 and 
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FIGURE 11. Shapes of axisymmetric supported drops when D = 0, G = 0 and H = 20 ; fixed-contact- 
line case. (a) Linearly polarizable drop with K = 41. ( b )  Nonlinearly polarizable drop with a = 1.2 
and T = 100. (c) Nonlinearly polarizable drop with a = 0.3 and 7 = 400. 

X 

T = 240 exhibits hysteresis in deformation when its contact line is fixed, a drop 
having a higher value of a (and a lower value of 7) e.g. a = 0.55 and 7 = 218.2, does 
not when its contact angle is fixed. 

Figure 11 shows the evolution of shapes of drops that are members of the families 
depicted in figure 10, which make a fixed contact line with the supporting plate, with 
increasing drop deformation. Plainly, up to an aspect ratio of about 1.5, the drop 
shapes are remarkably similar. When the aspect ratio exceeds the value it has at  the 
turning point, increasing nonlinearity of drop polarization results in large differences 
in drop profiles. In the family of linearly polarizable drops, a drop shape having a 
virtually conical tip is shown in figure 11 (a)  : this shape is reminiscent of the conical 
drop whose existence was first suggested by Taylor (1964). However, figures 11 (b )  
and l l ( c )  show that as the nonlinearity of fluid polarization increases, the drop 
profiles become concave near their bases a t  large drop deformations. 
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4. Conclusions 
In a series of experiments with ferrofluid drops, Bacri et al. (1982) and Bacri & 

Salin (1982, 1983) reported observing hysteresis in deformation with drops that were 
assumed to be linearly polarizable ferrofluids with K x 40. However, this value of K 

was not measured directly, but was back calculated from a fit of the observed 
hysteresis curve to that predicted by using a spheroidal approximation of drop 
shapes. Results presented in this paper for a nonlinearly polarizable drop with a fixed 
contact angle of go", corresponding to the case of a free drop, which initially behaves 
like a linearly polarizable drop with K = 41 are in excellent agreement with these 
experiments. Indeed, there is a wide range of values of the Langevin parameters 01 

and 7 over which hysteresis ought to be observed. 
According to the results of this paper, nonlinear polarization plays an increasingly 

dominant role in determining the qualitative response of a drop as its deformation 
increases. However, because of the similarities in behaviour between linearly and 
nonlinearly polarizable materials at  low and even moderate field strengths, indeed 
often nearly identical behaviour up to the first stability limit, it is recommended that 
future experimental work place a larger emphasis on the measurement and 
characterization of the nonlinear polarization of the drop material. 

Moreover, fixing the contact line of a drop instead of prescribing its contact angle 
widens the window of opportunity for observing hysteresis for drops that are linearly 
polarizable (see W & B) and ones that are nonlinearly polarizable as well. Thus, 
future experiments in which pendant or sessile drops are emanating from a nozzle 
may offer new opportunities for observing hysteresis phenomena. 

This research was sponsored by the Division of Chemical Sciences, Office of Basic 
Energy Sciences (BES), US Department of Energy (DOE) under contract DE-AC05- 
840R21400 with Martin Marietta Energy Systems, Inc. Calculations were carried 
out at the Florida State University (FSU) Computing Center under a grant from the 
BES Office of the US DOE. S. A. Kaye, a participant in the Oak Ridge Science and 
Engineering Research Semester (ORSERS) program, helped in the preparation of 
the figures for this article. The authors thank the referees for their constructive 
comments regarding this manuscript. 

REFERENCES 

BACRI, J. C. & SALIN, D. 1982 Instability of ferrofluid magnetic drops under magnetic field. 

BACRI, J. C. & SALIN, D. 1983 Dynamics of the shape transition of a ferrofluid magnetic drop. 

BACRI, J. C.,  SALIN, D. & MASSART, R. 1982 Shape of the deformation of ferrofluid droplets in a 

BASARAN, 0. A. 1984 Electrohydrodynamics of drops and bubbles. PhD thesis, University of 

BERKOVSKY, B. M. & KALIKMANOV, V. I. 1985 Topological instability of magnetic fluids. J. Phys. 

BOUDOUVIS, A. G., PUCHALLA, J. L. & SCRIVEN, L. E. 1988 Magnetohydrostatic equilibria of 

CHENG, K.  J. & MIKSIS, M. J. 1989 Shape and stability of a drop on a conducting plane in an 

LANDAU, L. D. & LIFSHITZ, E. M. 1960 Electrodynamics of Continuous Media. Pergamon. 
MELCHER, J. R. 1981 Continuum Electromechanics. MIT Press. 

J .  Phys. Lett. 43, L649. 

J .  Phys. Lett. 44, L415. 

magnetic field. J .  Phys. Lett. 43, L179. 

Minnesota, Minneapolis. 

Lett. 46, L483. 

ferrofluid drops in external magnetic fields. Chem. Engng Commun. 67, 129. 

electric field. PhysicoChem. Hydrodyn. 11, 9. 



16 

MELCHER, J. R. & TAYLOR, G. I. 1969 Electrohydrodynamics: a review of the role of interfacial 

MIKSIS, M. J. 1981 Shape of a drop in an electric field. Phys. Fluids 24, 1967. 
ROSENKILDE, C. E. 1969 A dielectric fluid drop in an electric field. Proc. R .  SOC. Lond. A312, 473. 
ROSENSWEIQ, R. E. 1979 Fluid dynamics and science of magnetic liquids. In Advances in 

ROSENSWEIG, R. E. 1985 Ferrohydrodynumics. Cambridge University Press. 
SHERWOOD, J. D. 1988 Breakup of fluid droplets in electric and magnetic fields. J .  Fluid Mech. 

188, 133. 
TAYLOR, G. I. 1964 Disintegration of water drops in an electric field. Proc. R .  SOC. Lond. A280, 

383. 
WOHLHUTER, F. K. & BASARAN, 0. A. 1992 Shapes and stability of pendant and sessile dielectric 

drops in an electric field. J. Fluid Mech. 235, 481 (referred to herein as W & B). 

0. A .  Basaran and F .  K .  Wohlhuter 

shear stresses. Ann. Rev. Fluid Mech. 1, 111. 

Electronics and Electron Physics, vol. 48 (ed. L. Marton). Academic. 


